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1. The phenomenon of creep of metals and alloys is primarily of interest because creep limits the useful life of many 

of the principal components of turbines, aircraft, chemical  plants, etc. 

On the one hand, we have the process of improving materials and developing new alloys with increased strength at 

high temperatures. This, and particularly the problem of developing heat-resistant alloys, is now attracting the attention 

of considerable numbers of metallurgists and metal  physicists. 
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Fig. 1. 

On the other hand, the designer must know how to use existing materials 

properly, i . e . ,  how to estimate with accuracy the life of the part he is design- 

ing, dimension it correctly, choose the most suitable material  avai lable,  and 

make the best use of its potentialit ies.  

So far, physicists have played only a small part in solving this problem, 

which is primarily the concern of engineers and experts in the mechanics of 

solids concerned with developing phenomenologica] theories of creep. A 

phenomenological  or mechanical  theory correlates the results of macro-exper i -  

ments and is formulated in terms of the mechanics of solids; the equations of 

such theories are formaily constructed and do not take into account the micro-  

effects that condition the process, although many of their elements essentially 

describe definite micro-mechanisms in a summary way; in a number of cases, 

apparently, a direct correspondence can be established. 

More than ,50 years have passed since the first engineering investigations of the creep of metals; during this t ime an 

enormous amount of usually rather complex experimental  material  on various 

metals and alloys has been accumulated.  This is because creep experiments 

usually form part of some engineering investigation intended to determine 

whether or not a certain mater ial  is suitable for a specific purpose. Almost all 

the existing data relate to the simplest standard creep test for constant load. 

The results are presented in the form of so-called creep curves. 

Some typical  creep curves are shown in Figs. 1, 2, and :3. Figure I gives 

the results of a unique series of tests on carbon steel  at 450 ~ lasting 1 00 000 hours 

(12 years) [1]. tt illustrates some typical  features of creep curves, which it is 

customary to divide into three parts: a primary stage of nonsteady creep up to 

5000 hours, a secondary stage of steady-state creep, during which the creep 

rate is constant, and a tertiary stage of accelerated creep preceding fracture. 

In the two lower curves the secondary stage is well expressed and no transition 

to the tertiary stage is observed. In the upper curves, corresponding to a 

higher stress level ,  there is only a nominal  secondary stage, since a constant 

creep rate is, strictly speaking, not recorded. 
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Fig. 2. 

Figure 2 gives curves for tests of medium duration on an aluminum alloy (D-16AT at 150 ~ [2]. In order to get an 

appreciable deformation in a short t ime,  it is necessary to raise substantially either the stress level  or the temperature.  

Clearly,  most of the deformation occurs in the primary stage, the secondary stage 

Z2 / - -  being hard to distinguish: at high stresses the first stage goes directly over into the 

iP'/o / o=18./mA.7~/ third, at low stresses the creep rate visibly continues to decrease throughout the 
kg 

a8 test. 
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Fig. 3, 

Finally, Fig. 3 shows the curves for a short- t ime creep test on alloy I)-I6AT 

at the very high (for the material)  temperature of 250~ T. Miletko). In phenom- 

enological  theories of creep the creep curve is regarded as the primary experimen- 

tal  fact. If every component worked only in simple tension at constant load and 

temperature,  a theory of creep would not be necessary; all the calculations could 

be based on creep curves. In fact, a series of creep curves for different stresses 



and temperatures is a graphic means of representing the relation 

e=] (~ .  T,t) (1.1) 

where e is the strain, o the stress, T the temperature, and t t ime.  Obviously, different methods of defining the function- 
al relationship are completely equivalent; the tendency to represent this dependence with the aid of a certain set of el-  
ementary functions is solely a question of convenience, not of princii~le. Therefore, as our primary fact we shall assume 
the existence of relation (1.1) as such, and regard all analytic representations of the law of creep as approximations of 
varying degrees of convenience and accuracy. 

This point deserves special emphasis. The outcome of a physical theory is usually some formula obtained as a result 

of definite assumptions concerning the micro-mechanism of the process. More or less approximate correspondence be- 
tween this formula and the experimental  data indicates that the assumed mechanism does in fact predominate (at least 
this is how experimental  results are usually interpreted). For the designer concerned with the life of a component made 
of a given material  such a formula is only a compact means of designating the properties of the material;  he will use a 
theoretical formula, if it is accurate enough, but prefers an empirical  one, if it describes these properties more exactly. 
The engineer is interested not in the form of the functional relationship, but in the behavior of those parameters on which 

a given quantity depends, and in establishing the approximate limits within wbich certain very simple hypotheses that 
l imit  the number of these parameters hold true. 

Let us return to gq. (1.1).  It is not the expression of any physical law, since it only describes the results of an ex- 

periment set up under perfectly definite, narrow conditions, when o : const and T = const. If o and T are functions of 
t ime,  then, generally speaking, predictions based on Eq. (1.1) will be unreliable.  

By a phenomenological or mechanical  law of creep (for uniaxial  tension) we mean some relation between the func- 

tions e(t) ,  o(t),  and T(t)  containing certain t ime operators - differential, integral,  or otherwise. When o = const and 
T = const, this equation must yield Eq. (1.1),  but it must also correctly describe other possible cases, when o or T varies 

in an arbitrary manner with t ime.  In reality,  the experimental  possibilities are l imited,  so that we are always left to 
make the best possible approximation to some set of experimental  data. 

We shall introduce into the starting relation a large number of operators, constants, and functions; let us introduce, 

say, derivatives up to a certain sufficiently high order. Clearly, if the number of constants is equat to the number of ex- 
perimental  points, then any theory will be confirmed. The problem is to get away from this path, to impose rational 

limitations on the excessive possibilities of representation, and to construct a simple phenomenological scheme that still 
takes into account the principal features of the effect. 

I n  this case the requirement of simplicity means that it should be possible to use the theory in practical engineering 

calculations and to obtain the final results with a certain reasonable, but not extreme, degree of accuracy. It is then es- 

sential to determine the structure of the phenomenological equations, to know whether they can be formulated as relations 
between directly measurable quantities or must contain certain structural parameters governed, in their turn, by definite 

kinetic equations, and which of these parameters is characteristic for a certain mater ial  or set of working conditions. The 

concrete form of the functional relationships is not particularly important:  if they are derived from a physical theory, it 

is possible to reduce the number of experiments required. In most cases, mechanical  theories use experimental  data ob- 

tained directly from macro-experiments and presented either in the form of graphs or with the aid of empirical  formulas. 
The latter are useful for interpolating experimental  data, whereas the question of the laws of application of these formulas 
for purposes of extrapolation goes beyond the framework of mechanics. 

We shall note certain features of the problems of the engineering theory of creep, with which it is necessary to reckon 

when comparing the data of physical and engineering theories. 

1) The designer is usually interested only in very small deformations. The problem of designing for creep is a double 

one. On the one hand,  there must be no accumulat ion of residual strains leading to interference with the proper function- 

ing of the part. Ordinarily, the permissible strain is very small,  for example,  1% of the total deformation due to increase 

in the diameter of a turbine wheel during operation. Often the requirements are even more strict - local deformation not 
to exceed 1%. Hence it is necessary to determine tbe so-called nominal  creep l imit ,  the greatest stress at which the 

creep strain during a given t ime,  the nominal  working life, does not exceed 1%. On the other hand, creep leads t o fa i l -  

ure, the strain at the moment of rupture decreasing with increase in the t ime of application of the load and hence with 

decrease in stress. Under actual working conditions modern heat-resistant alloys fail at very small  strains, often less than 

1%. 

2) Depending on the nature of the component,  the creep process may last from several seconds to several years or 

decades, the permissible strains being of the same order; thus, we have to deal with completely different temperature and 
stress levels. The region of investigation of creep may conventionally be divided into the following parts: 
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a) Long-t ime creep -- months and years. Chief area of appl icat ion -- stationary steam and gas turbines. Object of 
investigation - pr imari ly  steels of the fer rkic  and austenitic class. Creep is compl ica ted  by phase and structural trans- 
formations, the behavior of the materials  is individual ,  the phenomenological  laws are rather rough and approximate .  
The creep is usually considered s teady-s ta te ,  since the design regimes are stat ionary.  

b) Medium creep - h o u r s  and days. This kind of creep,  at a higher level  of stresses and temperatures,  is encountered 
in gas turbine power plants, notably in aircraft .  The problem is compl ica ted  by the fact that such components general ly 
operate at variable loads and temperatures;  the primary phase of creep is very important ,  

c) Shor t - t ime creep - s e c o n d s  and minutes. Interest in shor t - t ime creep has been aroused only quite recent ly ,  At a 
very high temperature level  for a given mate r ia l  creep is essential ly a process of quasi-viscous flow, and the mate r ia l  

can be l ikened to a liquid with nonlinear viscosity, 

Thus, the range of t imes during which roughly the same strain may be registered is about eight orders of magnitude,  
but components of a given type operate within a compara t ive ly  narrow range; therefore it is preferable to speak not of 
the theory of creep but of theories of creep,  each covering a cer tain section of this range and varying with the properties 
of the mate r ia l  and the prac t ica l  problems it is required to solve.  

Every investigator,  when he first runs a creep test ,  is struck by the wide scat ter  of the exper imenta l  data and the ex-  

t reme instabi l i ty  of the creep characterist ics,  which vary from specimen to specimen - t h e  apparent i rreproducibi l i ty of 

the exper iment .  

For this reason it is possible to state the following. The job of a metal lurgist  designing new alloys for use at high t e m -  
peratures is to block creep processes, thus ensuring the s tabi l i ty  of the mate r ia l  under working conditions. Hence, its 
characterist ics will  also be more s table .  In this sense, modern heat- res is tant  alloys are a more suitable mate r ia l  for in-  
vestigation than, say, carbon steels or D-16 aluminum alloys. On the other hand, the dependence of the creep rate on 
stress and temperature  is very strong. Therefore the result should not be considered a poor one if the creep strain in two 

apparently ident ica l  experiments is found to differ by,  say~ 50%. 

Let us phrase the question differently and ask what stress it is necessary to apply to a specimen to obtain a given strain 
rate .  It appears that the difference in stresses will  be of the order of 10%. This answer suits the designer perfect ly,  since 

he is concerned with permissible stresses or permissible loads; the difference is covered by introducing a certain safety 

factor.  

As an i l lustration of this approach, we may ci te  the experiments of TsNIITMASh (Central  Scient i f ic  Research Institute 
for Heavy-Duty Machines) [3, 4] involving destructive creep tests on turbine discs designed in accordance with a certain 

theory.  The t ime  to rupture varied within quite wide l imits .  I f  the theore t ica l  t imes to rupture are compared with the 
ac tual  t imes ,  the conclusion may not be favorable to the theory,  but an evaluat ion based on stresses shows that the di f -  
ference between theory and experiment  does not exceed 6%, or 3 %  with respect to the nominal  disc speed. This is a 

satisfactory resuk as far as prac t ica l  requirements are concerned~ 

2. Sffeady-state and quasi -s teady-s ta te  creep.. Over the l inear part of the creep curve the creep rate does not depend 

on t ime  but only on the stress and temperature .  This may be written as follows: 

e ' =  v (z, T) .  

To obtain a rough es t imate  of the cumula t ive  strain to a first approximation we may take 

Here we neglect  not only the strain 

formation.  

(2. :i) 

e=v(~ ,  T) t .  

of the primary stage but also the e las t ic ,  and possibly the instantaneous plastic de -  

Equation (2 .1)  may be t reated as a law of creep,  i . e . ,  regarded as sui table  for var iable  as well  as constant stresses 

and temperatures .  This means that the ma te r i a l  resemb!es a liquid with nonlinear viscosity; Eq. (2 .1)  is the most general  

law of viscous flow. In ac tual  fact ,  we must distinguish two cases. 

a) S teady-s ta te  creep folIows the primary stage.  I t  appears that  each t ime  the load changes a new primary stage 
begins.  As an i l lustrat ion,  consider Fig. 1. For t echn ica l  reasons the test was interrupted after 87 000 hr and resumed at 
the same stress some t i m e  la te r .  A new, fair ly long primary stage was observed and only after a cer tain t ime  was a con-  
stant creep rate (the same as before the interruption) restored. For l ong - t ime  creep Eq. (2 .1)  does not express a physicai  

law; it can be used only condi t ional ly ,  with a defini te  (rather low) degree of accuracy .  

b) Shor t - t ime  creep.  In Fig.  8 the  stage of constant creep has an ent i re ly  different character .  Whereas in the first 
case the  change in creep rate in the  pr imary stage denoted a change in the  properties of the  mate r i a l ,  while transit ion to 

the secondary stage denoted a cer tain s tabi l iza t ion  of these properties,  now the creep ra te  is invariant  from the very 
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beginning and there is no change in the properties of the material  during the creep process (disregarding, for the t ime 
being, the question of a tertiary stage). In fact, with short-time creep in most materials the creep rate is uniquely de-  
termined by the instantaneous values of the stress and temperature and is completely independent of the past history. 

A somewhat more far,reaching generalization of the hypothesis of steady-state creep consists in the following. Sup- 
pose we change the t ime scale, defining a certain function v (t) so that in the coordinates e-v the creep curve becomes 

a straight l ine.  Then, if we define the velocity in terms of the modified t ime v, Eq. (2.1) will describe the entire creep 
curve, whatever its shape. 

Of course, relation (2.1) still can not be regarded as a physical law. It may be understood in the sense that the struc- 
ture of the material  undergoes certain changes with t ime,  the kinetics of which are completely independent of the ap- 

plied stress. 

This view has been advanced before and is known as the aging hypothesis. It is linked with certain quite important 
advantages of a computational kind. If the load varies slowly, predictions based on this hypothesis are not bad. 

If the material  behaves in a complex way, if it suffers phase transformations and the characteristics of the creep 
curves are such that they can not be interpreted by a more rational method, possibly the simplest and most reasonable way 
of  designing real components is to adopt the hypothesis of aging and use the primary creep curves as they are obtained. 

An even simpler method is to base the calculations on (1.1).  The experimental  creep curves are replotted in the form 
of so-called isochronous or stress-total strain isocurves, each curve corresponding to a given value of t ime.  The creep ca l -  

culations reduce to a series of calculations based on the theory of plastic deformation with the plastic stress-strain diagram 
replaced by the corresponding isocurve. This relatively simple and rough method is now very widely used and gives reason- 

able results under stationary conditions. 

By processing a large amount of experimental data a number of authors have established that the isocurves may be 
considered similar; thus, 

= ~ (~) ,~ (t). 

It has been found that this relation is well approximated by the expression 

(e) 
- -  t ~ -  b t  ~ ' (2.2) 

where o = ~o (e) is the equation of the instantaneous tension curve; the value of 5 for metals is fairly constant, viz. B 

0.3. Formula (2.2) was thoroughly checked in [5, 6] and recommended (with certain reservations) for the extrapolation 

of creep data over long periods. 

Returning to steady-state creep, we note the commonest approximations of the dependence of ~ on stress. For con- 

stant temperature 

e" = e ~  , e" = 2 %  s h  - ~ ' ,  e'  = % - -  ( 2 . 3 )  

where a n and e e, On and o e are constants. The first of Eqs. (2.3), where two dimensional constants are intro- 

duced for convenience,  is the most widely used. The hyperbolic sine laws is obtained naturally in a number of phys- 

ical  theories of creep, so there is now a tendency to give it preference. The third equation practically coincides with the 
second, if the stresses are not too small,  and is more convenient to use. However, it should be borne in mind that it is not 

applicable at stoat1 values of o /o  e. 

The first of Eqs. (2.8) may be written more correctly as follows: 

�9 I ~ ~-~ ~ (2 .4)  

In this case we assume that the creep rates in tension and compression are the same, if the absolute values of the stresses 

are the same. This is to all  intents and purposes confirmed by experiment (cf. [7]). 

The power law of creep has certain practical advantages. It implies that if a body is exposed once to external forces 

Pl and a second t ime to forces Pg, proportional to the former, and if the stresses and velocities of points on the body are, 

in the first case, o I and ul and, in the second, o 2 and uz, then 
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* l  : z 2  = l a I  : P ~ ,  u l  : u~  - -  P t  ~ : P 2  n . (2.5) 

On the other hand, the second and third of Eqs. (2.3) and Eq. (2.5) can be written in dimensionless form, without any of 
the material  constants; therefore the theoretical solutions obtained are universal in character. 

In analyzing the data of our experiments, we have used the exponential  law, but we can not claim that it has any 
decisive advantages over the power law. It is impossible to describe the creep process over the entire range of stresses with 
the same constants. Thus, in [2] it was shown that in using the exponential  law it is necessary to take one set of values of 
the constants in the region of low stresses and another set for high stresses, when the instantaneous strain includes a plastic 
component.  The same applies to the power law. 

Moreover, on analyzing certain experiments relating to the complex stress state we see that the transition from a low 
to a high stress level is associated with certain qualitative changes in the creep process. In this case analysis based on the 
power law enables the transition point to be determined more clearly. 

Note that the purely formal, analytical  advantages of the various forms of approximation play an important part in 
the mechanical  theory of creep. It is often necessary to use simple relations obtained as a result of averaging a large 
number of scattered experimental  points rather than more complex formulas, which may be hard to apply even to the 

analysis of experimental  data, let alone the solution of theoretical problems. 

Considerably more complicated is the question of the temperature dependence of the creep rate. The simplest hypoth- 

esis reduces to the fact that the constants Sn and ee are functions of temperature 

% = e~~162 (T). (2.6) 

For us it is not too important that 

It appears that the activation energy is not constant. A study of its temperature dependence throws light on the micro-  

mechanisms of creep and has physical importance.  For computational purposes it is more convenient to approximate the 

function ~ (T) with some suitabIe, sufficiently simple expression. 

On the other hand, data on the primary stages of creep have been analyzed with the aid of the equation 

e ~ C e x p  t m 

and it has been observed that all  three constants, i . e . ,  c, o e, and m, depend on the temperature.  The temperature de- 

pendence of m means that the shape of the creep curve itself varies with temperature.  Only in a l imited temperature 

range, of the order of 50 ~ for steels, can ~e and m be regarded as constant, whereas for c relation (2.7)  is assumed. This 

applies to a fairly wide range of materials including copper, low-alloy steels, austenitic steels, and a luminum alloys. 

The question of a more accurate description of the temperature dependence of creep is important in another respect, 

which, strictly speaking, is not related to the problem of the mechanics of creep, but nonetheless is closely linked with 

it .  

Often in designing a part we have an insufficient supply of experimental  creep data. In particular, this is true of 

parts intended to remain in service for a long t ime.  It is therefore necessary to resort to extrapolation of the data for short- 

t ime tests. This question is of enormous practical importance and stilI unsolved. Evidently, the essential shortcoming of 
many such attempts is that they are concerned with creep in general; efforts are directed toward finding universal criteria, 

whereas, in actuali ty,  materiaLs and working conditions are more individual ized.  It is therefore important to establish 

principles that will enable us to distinguish certain individual groups of materials with essentially different rules of extra- 

polation. It is worth-while reporting certain points bearing on this problem, thoughthe literature onthe subject is extreme-  

ly voluminous and the problem itself is closely interwoven with the physics of creep. The same extrapolation formulas are 
generally used both for creep and for failure. The question of failure will be considered later.  For the t ime being it may 

be noted that most authors assume, explici t ly or otherwise, that failure corresponds to a certain strain accumulated in the 

secondary stage of creep. This crit ical  strain e* is independent of both stress and temperature [9, 10]. 

This view, which is based on the notion of a single mechanism governing both the creep rate and the failure rate, 

can not pretend to universal significance,  if only because, in general,  creep curves often do not have a secondary stage. 

Moreover, the total  strain at rupture by no means remains constant ; as a rule, it decreases with decrease in the rupture 

stress for a given temperature.  
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We shall take the relation between creep rate, stress and temperature in the form: 

e" = cxp ( 
U (~) \ 

- -  k ~ )  eonst. (2.8) 

In the special case when U = U0 -? /o ,  where ?, is a structure-sensitive constant, we get Zhukov's formula [9, 11]. If the 
rupture life is t*, then t* = e*/e, and from (2.8) we get 

"~1 = T'(c .5 log t*) = F (z). (2.9) 

The quantity r I is called the Larson-Miller parameter [12]. The single constant c is fairly easy to determine. The points 

corresponding to rupture for different times and temperatures must lie on a single curve, if along one axis we plot values 
of the parameter and along the other the stress. From the origin of the Larson-Miller parameter it is clear that it can be 
used not only for the extrapolation of data retating to long- t ime strength but also in relation to creep, if e* is understood 
to stand for some fixed strain. 

Another widely used method of extrapolating long- t ime strength data is that of Manson and Haferd [13], who intro- 

duced, in a purely empirical  way, the parameter r 2 

T - -  T a 
"r.a~-logt, logta - -F(~)  (Ta=cons t ,  , ta---- const). (2.10) 

Many authors have tried to verify the possibility of predicting data on creep and long- t ime strength using the above 

criteria and others, with our without some theoretical basis. In general, their conclusions are rather indefinite.  According 

to the majority of experimenters [14, 15], the best results are given by the Manson-Haferd formula, though any of the 

formulas may be used for a first rough approximation. 
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By way of illustration, the table contains data on the analysis of long- t ime (up to 34 000 hr) tests on the alloys 

n imonic-80  and n imonic-90  [16]. It gives the stress errors in the prediction of rupture life using the two criteria mentioned 

and a third derived from (2.7)  that gives an estimate of the life based on the modified t ime 

t 

To = I ~)(T)dt 
0 

(2.11) 

It is worthwhile dwelling in more detail  on [17]; the data it contains very clearly illustrate the difficulties in -  

volved in using different criteria. Figure 4 gives the stress as a function of the Larson-Miller parameter for an austenitic 

steel.  For each temperature the points lie on a particular straight l ine.  Itowever, if for all  the temperatures we draw 

through all the points a common straight l ine,  then none of the points will lie very far away from it. By joining the ex- 

perimental  points for a single temperature and producing the straight line obtained, we get a seriously erroneous result. 
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Thus, with the aid of the Larson-Miller parameter we can interpolate, but not extrapolate. The positive side of [17] 
may be summarized as follows. A general relation between rupture life, stress and temperature is proposed; 

log t* = a log ~ q- b (T). 

Depending on the nature of the quantity a, the material may be divided into four groups: 

(1) a = e o n s t ,  (2) a = a ( z ) ,  (3) a = a ( T ) ,  (4) a -~-a(T ,z ) .  

For the first three groups it is possible to find certain relatively simple methods of presenting the results. For instance, 
the data on austenitic steel, presented in Fig. 4, were correlated by 
making a suitable choice of the t ime-temperature parameter r ; these re-  

g0 
suits are given in Fig, 5, where all the points already lie on a single 6 
straight line. For the third group the Manson-Haferd criterion holds. The 10 
most complex behavior is that displayed by the fourth group, which in- 
eludes, for example, the chrome-nickel-cobal t  alloy S-590 investigated 6 
in [18]. 

Unfortunately, the author does not suggest how material might be 
reIated to one of the four groups in advance, when complete test data 
are not available. Thus, the study is purely empirical in nature and does 
not advance the solution of the problem of the extrapolation of creep 
data. Nonetheless, the analysis is very instructive. It gives a good idea 
of the difficulties involved and shows how carefully the various theoretical 
formulas must be related to actual material of a complex type. Each 
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Fig. 4. 

theoretical formula presupposes a certain perfectly definite deformation mechanism, whereas in engineering alloys dif- 
ferent mechanisms may exist side b y  side, and pure examples can be isolated only under special laboratory conditions of 
an artificial kind. 

Nonsteady creep. Creep processes of medium duration have become important since the gas turbine was introduced 
as an aircraft power plant, and the aircraft designer began to be concerned with the heating of wings and fuselage. Essen- 
tially, these processes relate to the first part of the creep curve, and the study of this part of the curve occupies an in- 
dependent place in the theory. In the preceding section, we draw attention to the possibility of a formal treatment of 
nonsteady creep in the same terms as steady-state creep. Of course, such a treatment could not be completely satisfactory, 
so we are obliged to seek other solutions. Without going into a detailed analysis of the various possibilities, let us consider 
two of the most fruitful concepts. 

a) Creep as a memory process. Boltzmann's old and well-known idea [19], later developed by Volterra and others [201, 
led to the creation of the so-called elastic memory theory of creep. In this theory Hooke's law is repIaced by a relation 
of the form: 

t 

E e ( t ) = ~ ( t ) - } -  I K ( t - - 6 )  z('Od~.: 
- - f ) O  

The memory theory can be generalized in various ways to include the case of creep of metals when the  relation be-  
tween stress and strain is essentially nonlinear. The present author has proposed the equation: 

t 

~p(e).=-6-~ I K ( t - - x ) 6 ( v ) d z  for e ' > 0  
- - O O  

(s. i )  

as well as an equation with the left side linear in e for relaxation. Other variants of the nonlinear memory theory were de-  

veloped in [22-24]. In formulating his hypothesis the author makes use of two basic facts, 

1. The similarity of the isocurves as expressed by (2.2).  The function ~a (e)  figuring in (2 .2)  and (3.1) determines 
the instantaneous strain curve; formula (2.2) is obtained f rom(3 .1 )  by choosing a suitable kernel. 

2. Creep recovery, Experiments [25] show that recovery is a linear process of the elastic aftereffect type. Equation 

(3 .1)  gives a qualitatively correct description of this phenomenon. 

In practice, the memory theory is rather difficult to apply. A more detailed investigation [26] has shown that in 
reality the role of recovery is less important than predicted by Eq. (3.1) .  At the same t ime,  the memory theory has found 
wide application in connection with concrete [23], rocks [27], plastics, and polymers [28, 29], where the nonlinearity is 
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more weakly expressed and in part need be taken into account only as a correction applied to the basic result. 

b) Equation of state or hardening hypothesis. It is natural to regard the creep rate as being uniquely determined as a 
function of stress and temperature for a given structural state. We shall assume that the structural state can be defined with 
the aid of a finite number of parameters of state. This means that if two specimens have the same numerical  values of the 
parameters of state, it is impossible to establish differences between these specimens with respect to structural properties 
of any kind. 

In accordance with the above assumption, at a given temperature the creep rate due to the same stress will also be 
the same for the two specimens. The number of structural parameters may be very large, although this number may not 
be confused with the number of structural properties by which states are identified. It is also impossible to maintain that 
all  the structural parameters play a part in the creep process. A material with a different structure may give the same 
creep rate under the same conditions. Thus, we shall assume that the creep rate is a function of the stress, the tempera-  

ture, and a certain set of structural parameters qi 

p" = v (z, T ,  qi) (i = 1 . . . . .  n) (3.2) 

In their turn, the quantities q. vary during the creep process in accordance with certain kinetic equations. In orderto 
�9 i 

obtam the complete system of equations of creep, it is necessary to link these kinetic equations with Eq. (3.2). 

The following assumption will be general enough: 
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dqi  = aid p @ bid~ -~ c i d T  -~  didt  (3,3) 

where p is the creep strain, while the quantities a i, b i, % d i may depend 

on p ,  ~,  T ,  t, q? The simplest assumption is that the only structural param- 
eter is the hardening parameter, which is uniquely linked with the cumu-  
lative creep strain. As this parameter we can take the quantity p. We 

then get the equation usually known as the equation of state for creep: 

p" = v ( , ,  p, T)  ( 3 . 4 )  

Fig. 5. 
In this equation p represents the creep strain, but not the total plastic 

strain. It is known [30] that a small  preliminary deformation has no effect 

on the creep curve. In [31] the author tested this fact more thoroughly and established that an instantaneous plastic strain 

of the order of 1% has no appreciable hardening effect. In general, however, the very complex interaction between the 

instantaneous plastic strain and the creep strain has received li t t le attention. 

In [32], where an investigation was made of the effect of pre- "0 

l iminary plastic deformation on the creep of copper, it was established 
that large plastic strains affect creep appreciably, in a rather remark- 5 

able way. For the region of small  plastic strains, in which the designer 

is primarily interested, the above conclusion is confirmed. In any case, ,,.0 
the introduction into (3.4) of the total  plastic strain instead of the creep 
strain leads to a serious error, whereas neglecting the hardening role of 
the instantaneous deformation is an acceptable approximation as far as 45 

engineering calculations are concerned. On the other hand, preliminary 

creep has been observed to have an appreciable effect on the instanta-  

neous strain curve [33]. 

I 
p %  

36 

? 
73 40 6O 

i 

/ J 2  

1 
i 

t h r  

gO tOO 

Experimental verifications of the kinetic equations of creep have Fig. 6. 

mainly been along the following lines. 

a) Comparison of creep and relaxation data. In relaxation tests the elongation of the specimen is kept constant while 

the fall in stress is measured. Putting d = 0, we can integrate (3.4) and find the stress as a function of t ime .  There is a 
known graphic method of constructing relaxation curves from creep curves [34]. We preferred to take an approximate ex- 

pression for the creep curves and assign suitable values to Eq. (3 .4) ,  which is integrated for the relaxation case. The re- 

suits of predicting relaxation curves from creep curves based on the very simple hypothesis expressed in Eq. (3.4) are 

completely satisfactory. 

b) Creep under stepwise loading. The case of creep with a sudden stepwise change in load gives greater contrast than 
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the case of relaxat ion,  when the stress changes smoothly.  With this method of testing the errors of the predictions based 
on different variants of the theory are more c lear ly  expressed. At the same t ime ,  the simplest hardening hypothesis (3 .4)  
is verif ied indirect ly without any calculations involving approximations.  Similar  tests have been carried out by the author 
of this paper and by a group of Japanese authors, The work of the la t ter  is reviewed in [35]. In the  form ( 3 . 4 ) t h e h a r d e n -  
ing hypothesis is vai id only as a first approximat ion,  Experiments show a systematic deviat ion from the results predicted 
by the theory, The nature of this deviat ion is as follows. 

1. With increase in load the creep rate grows considerably more rapidly than follows from the theory,  The theore t -  
ica l  value is approached only after a certain t ime has elapsed,  The to ta l  strain is somewhat greater than the theore t ica l .  

2. With decrease in load the creep experiences a certain "pause, " then it gradually increases and attains the theo-  
re t ica l  value. 

These facts have been verified for quite different materials  both by the present author [33, 2, 31, 36] and by the 

Japanese [35]. 

c) Creep with smal l  changes in the stress state.  In the theory of s tabi l i ty  of structural e lements  at high temperatures 
Eq. (3 .4)  is varied.  For smal l  increments in the stresses and strains re la t ive  to the stresses and strains of the basic state we 
get a certain theological  relat ion recal l ing the known Thomson equation but with var iable  coefficients .  In [87] data are 
given on the direct determinat ion of the coefficients of this equation. They differ quite sharply from those obtained by 
varying (3 .4) .  

eY 

Fig,  7. 

In the above-ment ioned experiments the problem was essential ly to find the 
conditions for which the contradictions between theory and experiment  are most 
c lear ly  expressed. In prac t ice ,  the variat ion in load is usually quite smal l  and 
the simplest  theory gives perfect ly satisfactory results - a s  in the re laxat ion prob- 

l em.  The theory is also appl icab le  to the case of temperatures varying slowly 
within narrow l imits .  Although in this case we get effects s imilar  in character  to 
those associated with var iable  stresses, the theory permits fairly re l iab le  ca l cu l a -  

tions, even for temperatures  that very cyc l i ca l ly .  

Let us now return to the more general  re lat ion (3.2) ,  (3 .3) .  In [35] the au-  
thors deal  essential ly with the case where n = 1 and 

d q ~ = a  d p @ d  dt.  (3 .5)  

No defini te  hypotheses were proposed in connection with a and d and a number of detai ls  are missing from the publ ica -  
tions; however, the authors state that by obtaining these coefficients exper imenta l ly  they can get a very good description 
of creep under var iable  loads. Relation (3.5)  may be regarded as a new formulation of the old idea of interact ion between 

hardening and softening in the creep process; the second term expresses softening if  d < 0, aging if  d > 0. 

Let us consider several  other possibiIities of introducing structural or hardening parameters .  The simplest  assumption 

dql = r dp (3.6)  

implies  that the energy dissipated in creep is taken as a measure of hardening. It turns out that  this minor modif icat ion of 
the general  hardening hypothesis results in an appreciable  improvement  in the  degree of correspondence of theory and ex-  

per iment  [38]. Figure 6 shows exper imenta l  points for the creep of a l loy D-16AT at 150 ~ for a stepwise varying load and 

curves ca lcu la ted  from Eqs. (3 .2)  and (3.3)  with hardening parameter  (3 .6) .  

In [39] there was introduced yet  another structural parameter  q2 such that 

dq~ = p d~. (3. ~/) 

With stepwise variat ion in load this parameter  receives a f ini te  increment .  It gives quite a good description of several  

of the effects noted.  

Thus, we conclude that with an accuracy sufficient for most p rac t ica l  purposes the creep of structural ly stable m a t e -  

rials under var iable  loads may be described with the aid of the s imple equation (3 .2) .  At the expense of a slight re f ine-  

ment of the basic hypothesis the accuracy can be much improved.  True, these results re la te  to the case in which the in-  

i t i a l  deformation is e las t ic .  In the  plastic region,  the picture is somewhat more compl ica ted ,  but the general  approach 

described offers a real  means of seeking the corresponding equations.  
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For prac t ica l  purposes it is convenient to put the law of hardening in a certain acceptable  analyt ic  form, to which 
there is no need to assign an absolute value.  It is simply a matter  of a more or less convenient approximation of the ex -  
per imental  data .  For many materials  the first sections of the creep curves are approximately the same. Equation (3 .2) ,  
for example ,  may be written in the form; 

h = P (p) s (~). (a. 8) 

For the t ime  being, let us leave the question of temperature  dependence on one side. Numerous authors, starting with 
Andrade [40], have established that over the first section of the curve the creep strain is proportional to t m, where 0 < 
< m < 1. Andrade obtained a value of 1/3 for m and regarded this as a physical law. In rea l i ty ,  m may assume various 
values and for the same mate r ia l  is dependent on the temperature .  Now the function P (p) is determined uniquely, and 
the law of hardening assumes the form 

l ~ D ' b  
/5 = / ) - e  S (~), ~ - -  m (3 .9)  

The function S may be either a power function or an exponential function, like v in the law of steady-state creep. 

Certain l imitat ions affecting the form of the function S (o) were noted in [41]. In a first approximation the temperature 
dependence can be taken into account with the aid of the factor {J (T) on the right side, although this, too, is not exact .  
It has already been pointed out that the exponent m also depends on the temperature .  We sti l l  lack more accurate  informa- 
tion about the temperature  dependence of the law of hardening. 

Let us assume that the strain is proportional to t m and that at the in i t ia l  moment  the creep rate is infini tely large.  
Actua l ly ,  it is impossible to determine the dividing line between the end of instantaneous deformation and the beginning 
of creep deformation in a creep test ,  and measurements of the instantaneous deformation are inaccura te .  Attempts to de- 
te rmine  the in i t ia l  creep rate have been unsuccessful. The behavior of the mater ia l  in the first fractions of a second fol-  
lowing appl icat ion of the load depends appreciably on the method of loading, as determined by the dynamic character is-  
tics of the testing machine .  Therefore,  in a number of cases we used the following technique.  The load was applied not 
instantaneously, but in accordance with a quite definite law. Usually a constant increase in stress was ensured by means 
of a hydraulic or e l ec t romechan ica l  device'. From the very beginning the elast ic  and plastic deformation is accompanied 

by creep,  By assigning a defini te  form to the creep law, it is possible to reconstruct theore t ica l ly  a hypothet ical  instanta-  
neous deformation curve. 

The problem of the transition from nonsteady to s teady-s ta te  creep may be 
ga ~ solved in more than one way. One approach presupposes that with increase in p the 

o kg/mm2 g S ~ .  function P (p) in (3 .8)  tends to a f inite l imi t ,  which is reached either for a f inite 
,F . ~ "  ~ . o  value of p or as p--,- 0o. One possible calcula t ing scheme based on this principle 

is described in [42]. 

- l aosa 
a/ ~ ~ o  , . _ . . . ~  .-~ 016 A second approach is also possible. It is assumed that nonsteady creep and 

o , o"g---go o - s teady-s ta te  creep are controlled by different mechanisms and coexist simultaneous- 

o ly and independently;  then the to ta l  strain at any moment consists of the instanta-  ~ ~ neous elast ic  or elastoplast ic  deformation e 0' the deformation ofnonsteady creep p, 
tO and the deformation of s teady-s ta te  creep e l,  which proceeds continuously at a 

constant ra te .  The nonsteady component is described by a certain equation of the 
same type as the ectuation of state (3 .4) ,  but damps out with t ime ,  the creep rate 
approaching zero.  

e % The investigation of nonsteady problems in accordance with these two principles 
0 ! 2 is carried out by quite different methods. Considerations of s impl ic i ty  and conven-  

ience compel  us for the moment  to prefer the first principle,  akhough we sti l l  lack 
the exper imenta l  data for making a rea l ly  rat ional  choice.  

Fig. 8. 
It is possible to go still further in analyzing the mechanism of creep. Thus, 

being anxious to take recovery into account,  the author of [48] isolated the component corresponding to the nonlinear 
memory type of strain.  Analysis of the exper imenta l  data for ce l lu lo id ,  in which recovery is very important ,  gave en-  
couraging results. 

In recent  years a great dea l  of attention has been paid to shor t - t ime creep lasting seconds and minutes. A high level  
of stresses and temperatures creates specif ic  conditions; for the major i ty  of mater ia ls  creep is not accompanied by harden- 

ing and takes the form of a quasi-viscous flow superimposed on the ordinary elastoplast ic  deformation,  If we a t tempt  to 
ana lyze  tests run at different loads and temperatures  with the aid of Eq. (8 .9) ,  we find that with increase in load and 
tempera ture  the exponent c~ tends to zero.  
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Before considering the experimental  data on short-t ime creep in more detail ,  let us examine the choice of l imit ing 
working conditions for parts operating at high temperatures. We shall plot temperature and stress along the coordinate 
axes, as shown in Fig. 7. The upper curve corresponds to instantaneous rupture; the region of working regimes lies wholly 
below this curve. If the part is designed for a l ifet ime i t ,  we can plot a long- t ime rupture curve for h -  Onthe otherhand, 
if the creep strain is small ,  it can generally be neglected in the calculations. Assigning some reasonable tolerance, we 
can plot a curve e 1 corresponding to the  accumulation of strain at the l imit  of this tolerance in the t ime h .  The shaded 
region CI, bounded by the curves t 1 and e I, is the region in which it is necessary to have the creep characteristics in 
order to design a part of the given type. Now if the part is designed for a shorter l ifet ime t 2, the corresponding curves t 2 
and % will lie above the curves t 1 and %, and the corresponding region of working regimes will be C2. Onthe same plane 
we can plot the curve corresponding to the boundary of the region for which a = 0; for sufficiently small  t z the region C~ 
lies wholly above the curve a = 0. Shore-time creep investigations in our laboratory were based on the following hypotheses~ 

1. Each temperature has its own curve of instantaneous deformation. 

2. The creep rates depend only on stress and temperature and not on the past history, particularly the previous plas- 
tic strain. These assumptions were verified in various ways with perfectly satisfactory results. Figure 8 shows stress-strain 
curves (alloy D-16AT at 250 ~ for a constant loading rate; the figures on the curves denote the rate of change of stress in 
kg /mm! per second) for different rates of change of load (difference equivalent to four orders) calculated in accordance 

with this hypothesis. The experimental  points are aho shown. The instantaneous curve is not very different from the curve 

recorded for maximum rate of change. The creep law was determined independently - - f rom tests at constant stress. It 
should be noted that we tested engineering alloy as supplied by the manufacturer; accordingly, the individual scatter is 
fairly high. The theoretical  curves were constructed from averaged characteristics and compared wi ththedata  for a sinRle 

specimen. The difference does not exceed the limits of scatter. 

Another method of confirming that the creep rate does not depend on the past history is to run a repeated relaxation 

test, when the relaxed specimen is returned to the starting stress, relaxed again, and the process repeated several t imes. 
All the repeated relaxation curves coincided perfectly, which indicates absence of hardening. 

The results of short- t ime creep tests on a luminum and t i tanium alloys and various types of steel,  partially published 

by S. T. Mileiko in [44], enabled the present author ro propose the following empir ical  formulas for the creep rate as a 

function of str~s and temperature:  

/~ - -  k exp (aS -}- vT) for t < TI, 

~0 
(s.10) 

Here a, no, % To, T1 are constants. In the transition region, when T ~ T 1 (275-300 ~ for alloy D-16AT) the scatter of the 

data is somewhat greater than at other temperatures. Howeverp we shall not dwell on the question of what happens at the 

boundary between the two forms of ( 3.10).  

4. Failure due to creep. It is only very recently that attempts have been made to include the problem of failure due : 

to creep within the framework of the theory of creep. The simplest scheme is that of viscous fracture [45]. For simplici ty,  
let us assume that the creep is steady-state and that (2.1)  also holds true in the region of finite strains. Now the state of 

deformation must be understood to mean the ratio of the rate of elongation to the instantaneous length of the specimen.  
Denoting the latter by x, we get & = i / x .  It is natural  to take the  quantity e = In x/x0 as a measure of deformation, where 

x 0 is the in i t ia l  length. At constant load the stress will increase due to reduction of the cross-sectional area. Assuming that 
that the volume is invariant,  we easily see that o = o0 exp e, where o0 is the nominal  stress ( i . e . ,  the stress referred to 

the in i t ia l  cross-sectional area). We can now integrate the equation 

= v (ao e x p  e) 

It turns out that e attains an iiffinitety large value in a f inite t ime ,  which is alsotaken asthe rupture l ife.  For a power 

law of creep we get 

** - ~ t , a T )  �9 ( 4 . 1 )  

It may appear strange that such a simplified approach sometimes gives good agreement with experiment.  One reason 

for this is that at the end the creep Curve is characterized by extremely rapid growth~ Another reason is discussed below. 

For relat ively large times and low stresses we get another kind of failure, characterized by bri t t le  fracture and very 

small  strains. The theory of this kind of failure may be formulated as follows~ We shall introduce a certain embfi t t l ing 
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parameter  co, which is equal to zero for unstressed mater ia l  and unity at the moment of rupture. We shal lassume that 
this parameter  varies with the stress in accordance with an equation of the type 

= ~  (~, m). (4 .2)  

Integrat ing this equation, we find the corresponding t ime  to rupture t ':~, when co = 1. 

In [46] the present author took 

~ )~, 
/o =B i-~-- d 

whence he got 

1 
t,'--~, = (t -{- k) B~otc. (4 .3)  

An analogous result was obtained in [47], where essentially the same scheme was employed.  When n =k,  the laws of 
viscous and bri t t le fracture are exact ly  the same,  which explains the satisfactory results obtained with formula (4. 1). 

In log- log  coordinates the stress-dependence of the rupture life is rep-  
resented by straight lines in both cases. Usually, the exper imenta l  data are 
closely distributed along one or both of these lines. Between them there ex -  
ists a certain transition region,  which has been investigated by a number of 

authors. 

It should be borne in mind that rupture is preceded by a ter t iary stage 
of acce le ra ted  creep,  With pure metals this can apparently in many cases 
be re la ted to the reduction in cross-sectional  area,  as follows from the 
scheme of viscous fracture.  This scheme,  however, does not take necking 
into account,  i . e . ,  the loca l iza t ion  of strain starting from a given moment .  
At the same t ime ,  in many alloys,  especia l ly  at low stresses, the ter t iary 
stage appears at very smal l  strains of the order of 1 - 2 % .  An e lementary  

i p % / 
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..... 
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Fig. 9. 

ca lcula t ion shows that this can not be attributed to a change in cross-sectional  area.  We are left to assume that the de -  
velopment  of embr i t t l ement ,  i . e . ,  growth of the  parameter  c~, exerts an influence on the creep rate .  Following the gen- 
eral  view, we shall  assume that  co is one of the structural parameters determining the creep rate.  The hypothet ical  form 

of the k inet ic  equations of creep with embr i t t l ement  is assumed to be as follows: 

- - - - -a~n( l - -o)  -q, ~ = b z k ( l - - o )  - r  (4 .4)  

These equations qual i ta t ively  describe the creep curve, including the te r t ia ry  stage, and also enable us to determine 

the rupture l i fe .  For s impl ic i ty ,  we shall  not introduce the hardening parameters;  therefore the equations wi l lnot  describe 

the primary stages, although in principle it is not difficult  to arrange for this. Shor t - t ime creep without hardening is an 
example  of the direct  app l icab i l i ty  of Eqs. (4. 4). In analyzing the exper imenta l  data on shor t - t ime creep we assumed 
t h a t n  =k =q= r, which permits a fair ly 
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good description of the exper imenta l  resuks, both creep curves and long- t ime  

strength curves. In Fig.  9 the exper imenta l  creep curve (solid l ine) and the 

theore t ica l  curve (dashed l ine) with a ter t iary stage are compared (a l loy 
D - l S A T  at 250* for o = 18.6 kg/mm2).  The creep characterist ics were de te r -  
mined from the in i t ia l  sections of the creep curves; the embr i t t l ingcharac t i s -  

tics were taken from an analysis of long- t ime  strength curves. With the above 
mentioned equal i ty  of the exponents, Eqs. (4 .4)  yield the following principle .  

If t*(o) is the rupture life for a constant stress ~, then for a var iable  stress rup- 

ture will  occur when the equal i ty  

t 

- / ; -  = i ( 4 . 5 )  

is fulf i l led.  

In the  region of shor t - t ime  creep this principle is fair ly well  observed, whereas over medium and long periods it is 
sys temat ica l ly  v io la ted ,  especia l ly  when the stress decreases.  Evidently, the kinet ic  equation of embr i t t l ement  must have 

a more complex character ;  in par t icular ,  it  is necessary to take  into account the possible heal ing of cracks. 
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The signif icance of the phenomenological  approach, as expressed by Eqs. (4 .4) ,  (4 .5)  or possibly more complex 
equations, consists in the following. As a rule,  a l l  structures that  are designed for creep are s ta t ica l ly  indeterminate .  
Therefore the stress distribution is determined by the law of creep and depends on t ime .  The customary method of design- 
ing for long- t ime  strength is first to seek the stresses in the elements and then to compare these stresses with the long- t ime  
strength curve, if necessary using principle (4 .5) .  In carrying out the first part of the calcula t ion,  i . e . ,  in seeking the 
stress distribution, we do not take into account the opposing effect of incipient  fai lure on the distribution of creep rates, 
and hence on the stresses. For mater ia ls  in which embr i t t l ement  has l i t t l e  inf luence on the creep rate and crack formation 
is local  in character,  this scheme is appl icable .  In other cases the formation of cracks distributed more or less uniformly 
over the volume begins even in the early stages of creep.  These join up in the last stage, forming macrocracks,  which 
may be very numerous. This applies,  in part icular ,  to areas of stress concentrat ion.  In est imating the effect of stress con- 
centrators on strength under conditions of creep,  it is necessary to allow for the effect of crack formation on the creep rate ,  
even though only in a rough and hypothet ical  form. 

5. Creep in the complex stress s tate .  Al l  real  components,  wi thrare  and general ly  uninteresting exceptions,  operate 
in the complex stress s ta te .  At the same t ime ,  creep tests on specimens in the complex stress state a re techn ica l ly  difficult  
and the published data are re la t ive ly  few. In physical  investigations this problem is almost always bypassed, and there are 
no theories,  apart from phenomenological  ones, of complex-stress creep.  The theory of plast ici ty of metals at normal 
temperatures ,  when t ime  effects are absent or negl ig ib le ,  has been better  developed than the theory of creep and has, of 
course, been a model  for the la t ter  as regards the construction of different kinds of hypothet ica l  equations. 

Any one-dimensional  re lat ion between stresses and strains and their  rates of change can be nonumerical ly  transform- 
ed by converting it into a relat ion between tensors. In recent  years the formal  theory of functions of teusors has been in -  
tensively developed [48, 49], and the basic diff icul ty consists in the ex t remely  broad possibilities offered by this theory 
and the indeterminacy of the cri ter ia  for choosing among them.  The creep rate tensor Pij must depend on the tensor oij 
and the hardening parameters,  which may be scalar quantities or tensors of any rank. If  the hardening parameters are 
scalar ,  we shall  ca l l  the hardening isotropic.  The hypothesis of isotropic hardening is the very s imple hypothesis that forms 
the basis of the major i ty  of existing theories,  although its unsatisfactoriness can easily be demonstrated exper imenta l ly  [50]. 

Suppose that we carry out a tensi le  creep test on a tubular test p iece .  The creep rate  decreases.  We undertake to re -  
late  this to the hardening effect .  We  interrupt the test,  unload the test p iece ,  and apply a twisting moment .  If  the hard-  
ening is isotropic,  i . e . ,  determined by a scalar  parameter ,  the hardening due to the tension will  also affect the  creep 
rate in torsion. In fact ,  the creep in torsion is the same as for a specimen that was not first subjected to tension. In fact ,  
hardening anisotropy can be observed only when the type of stress state changes during the test .  For constant stresses or 
stresses that vary with a single parameter  the theory of creep with isotropic hardening holds, or more exact ly ,  given suf- 
f ic ient ly  broad assumptions about the nature of the hardening anisotropy, in this case we get a result coinciding with the 
predictions of the isotropic theory.  I f  the stress st ate does not change with t ime ,  we apply the term quas i -s teady-s ta te  creep,  p. 
This case is often rea l ized  in structures, exac t ly  or approximate ly .  Only for this case do we al ready have effect ive design 

methods. 

The basic exper imenta l  fact relat ing to quasi -s teady-s ta te  creep is that for different forms of stress state the in i t ia l  

sections of the creep curves are s imi lar .  This means that if we construct graphs, plotting along the ordinate axis some 
component of the creep strain tensor or a homogeneous function of the  first power of these components and along the axis 
of abscissas t ime ,  then,  by changing the scale  of the ordinates,  we can make a l l  these curves coinc ide .  Therefore the 

fundamental  law of quasis teady-state  creep may be written in the form: 

*?ij = vii (%z)" (5 .1)  

If  p i j  is the der ivat ive  of the  strain with respect to t i m e ,  we have s teady-s ta te  creep ; for quasis teady-s ta te  creep the 

role of t ime  is played by the argument r (t), which takes into account the shape of the  s imi lar  creep curves. The pos- 
s ibi l i ty  of representing the exper imenta l  data for constant stress in the form (5 .1)  must be regarded as the  defini t ion of 
quasis teady-state  creep,  i . e . ,  the de l imi ta t ion  of the class of mater ia ls  examined  below and their  conditions of service.  
As is known, in the general  case, for isotropic mate r ia l  the tensor vii is expressed in the  form of a l inear function of 

three temors:  the unit tensor, the  tensor oij and the square of the tensor oij .  The coefficients of this expression, in the i r  
turn, are arbitrary functions of the  three invariants of the stress tensor. The use of this kind of general  re la t ion either for 
interpreting the exper imenta l  data  or subsequent appl icat ions,  holds l i t t le  promise,  and the c i rc le  of possible assumptions 
must be narrowed. A significant role in the development  of the theory has been played by the idea of the existence of a 

creep potent ia l ,  i . e . ,  a stress function f(Ok/) such that 

o/ 
p{j ~_ o~{j . (5.2) 
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There have been numerous attempts to prove the existence of a creep potential, but these will not be considered 
here. We shall merely note that the existence of a creep potential does not follow inevitably from the principles of 
thermodynamics and requires additional hypotheses. One of the decisive circumstances is the fact that it is simpler to 
develop the formal apparatus of the theory of creep in the presence of a creep potential. It is possible to formulate cer- 
tain variational principles that facili tate the solution of problems; uniqueness theorems can be proved. 

Assuming that creep is not accompanied by volume deformat ion ,  we conclude that the creep potentialdepends on the 
second and third invariants of the stress tensor. If the potential depends only on the second invariant,  we arrive at the 

following equations of creep: 

3 v (~o) - -  ~Sij ), 3~ = (:o z = '~/~ vbij) 
/;ij - -  2 ~o (~ij ~ii (~O - -  (~ij - -  ~Sij))" (5.3) 

The quantity o0 is called the stress intensity. 

Relations of type (5.3) are well known in the theory of plasticity and were transferred to the theory of creep by anal-  
ogy. They form the basis of most existing theories. By analogy with theories of plasticity of the St. Venant type, given 

the associated law of creep it is possible to construct creep equations of the form: 

(5.4) 

where o 1 > o~ > o 3 are the principal stresses. 

A more general assumption is that the creep potential depends on some equivalent stress cr = o0g(0), where 0 is the 
so-called angle of similari ty of the deviators, i . e . ,  the angle formed by the vector of the octahedrat tangential  stress 
with the projection of one of the principal axes on the octahedral plane. The choice of o0 and 0 as independent invariants 

is completely equivalent to the usual choice of a system of invariants of the deviator of the stress tensor [51]. The vector 

of the octahedral shear rate generally forms a certain angle with the vector of the octahedral tangential  stress; we shall 

denote the tangent of this angle by ~(0). We resolve the vector of the octahedral shear rate into two components; one 
coinciding in direction with the vector of the octahedral tangential  stress and the other perpendicular to it; these we de- 

note by v s and v t, respectively (correct to a constant multiplier).  Then from (5.2) and tbe above assumption we get: 

~s v t g' (0) 
v* - g ~, (~*) ,  ~'~ - • (0)  . . . .  g (0)  ( 5 . 5 )  

We present the data for 0.17C steel at 450 ~ In Fig. 10 we have plotted 

the points corresponding to the experimental  values of ~ .  If x = 0, then 

Eqs. (5.8) hold true. Relations (5.4)  correspond to the dashed curve on the 

graph. Clearly, the experimental  points are grouped close to the axis of 

abscissas; most of them lie below the axis, but only just, and it is im-  

possible to detect a definite law. Evidently, it is a question of the random 
scatter typical  of creep tests. However, four points, relating to the highest 

In the special case where the creep law (5.3) holds true, x = 0 and v* is the intensity of the creep rates. Equations 

(5.4) may also be derived as a special case. The direct verification of (5.5) is the simplest means of clarifying the role 

of the third invariant in the law of three-dimensional  creep. Almost all the published data on creep in the complex stress 

state have been analyzed in this way. The deviation of the quantity x ((9) from the predictions of the theory is a very 

sensitive criterion that enables us to estimate its correspondence with reality.  In principle, we can use (5.5) to determine 

the function g(0) if 34(0) has been found. 

Actually, the considerable scatter of the experimental  data in every, even the most careful, investigation makes it 

impossible to do this reliably; however, certain conclusions are possible. The most complete and systematic investigations 
of creep in the complex stress state are those made by Johnson et al. [52]. Since it is impossible to dwellon the technical  

details, we shall merely draw attention to their extreme care and accuracy. Complete results have been published for 

carbon steel at three temperatures, for a luminum alloy at two temperatures, for magnesium alloy at two temperatures, 

and for heat-resistant nimonic alloy at one temperature.  The tests lasted 150 hours; thus, the first period of creep was 

investigated. In analyzing the results, use was made of the above-mentioned 

similari ty between creep curves. The individual curves were reduced to a cer- lO o1-~ k . .~  I I II 1, [ 14a,-,'r-~ II 

tain standard mean curve and a comparison made of the creep rates with re- 8 I~_mmZ I I I [ , Z ~ l l  t l 
c o a  r n f u c o n o  m I 

~l /g 100 

Fig. 11. 

stresses, constitute an exception, These lie close to the dashed curve derived from (5.4) .  The satisfactory confirmation 

of one of the conclusions following from (5.3)  obliges us to put o* =o0; thus, it remains to verify the dependence v*(o0). 
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The quantity v* is now equal to the intensi ty of the strain rates. Figure 11 shows this relation in log-log coordinates. It 
is fairly well represented by two segments of straight lines, i . e . ,  we get a power law with one exponent at low and an- 
other at high stresses. 

Using the exponential law of creep, we can also detect a dis- 

~2 ,~ o , ~ . ] i  if- continuity in the graph plotted in semilogarithmic coordinates, but 
0 . o ... ~_ this discontinuity is less abrupt, if so desired, it can be ignored. It 

" "  " " ~ -  . . . . .  -g--~"~o"" should be borne in mind that all four experimental  points relating 
-aS :; precisely to those tests for which the value of ~ is close to the val-  

04 o a8 /2 cg ue predicted by formulas (5.4) lie in the region of high stresses. 

�9 Thus, at low stresses the creep is well described by Eqs. (5.8),  while 
Fig. 12. 

at high stresses the best results are given by Eqs. (5.4).  The shortage 
of experimental  points makes it impossible to carry out a reliable verification of relations (5.5) for the region of high 
stresses, where g (0) # 1. Analogous results are obtained for other materials and temperatures. 

As a second example,  we present an analysis of the data of experiments on 1Kh18NgT austenitic steel at 600 ~ [53], 

where a comparison was made between the rates of steady-state creep. These tests lasted considerably longer - up to 

2000 hours. Figure 12 shows the dependence of v = g'(eO/g(e 0 on a certain quantity c~ (the tests were for combined torsion 
and tension - stresses r and o, respectively - tg c~ = lY~/o  ), which is a function of O. In principle, this method is no 
different from that described above. The advantages in any particular case are associated only with the form in which 
the in i t ia l  experimental  data are presented. According to (5.3),  we should have v = 0. The dashed curve shows v (cO ac- 
cording to (5.4).  The scatter of the experimental  points is fairly large. In general, the experimental  points lie midway 

between the values predicted by the two theories, but with a bias toward (5.4).  Figure 18 shows v 0 as a function of o 0' 

in accordance with (5.8),  and Fig. 14 v* as a function of c1", in accordance with (5.4) .  

In the first case the points are spread over a fairly broad band. The left-hand curve relates to tests in simple tension, 
the right-hand curve to torsion tests; the intermediate points correspond to combined stress states. In the second case the 

points corresponding to tension are again isolated; the torsion curve now lies much closer than before. The points corres- 

ponding to intermediate stress states are grouped quite close to the torsion curve, without a definite tendency to concen- 

trate on either side. Clearly, for this material  Eqs. (8.4)  give a better result than Eqs. (8.3).  The isolated position of 
the points corresponding to simple tension is evidently connected with the technical  conditions of the experiment.  

14 

1.0 

O~ 0 ~ 

lg v o 

08 ,16 Z4 
i 

Fig. 18. 

The majority of experimental  investigations of creep in the complex stress 

state relate to round specimens in combined tension and torsion, the range of 

angles @ extending over 30 ~ If we assume that the mater ia l  is isotropic and has 

the same properties in tension and compression, this is sufficient; however, it 

is not sufficient to permit conclusions about isotropy or anisotropy. The same 
effects can be attributed both to the third invartant,  t . e . ,  the function g (0), 
and to the anisotropy of the mater ia l .  Therefore a careful, independent check 

on the isotropy of the material  is absolutely essential. 

The following problem of the theory of the complex stress state relates to 
the criteria of faiiure.  The most complete experimental  data pertaining to this 

problem are again those of Johnson [52]. Apparently, for the majori ty of mate-  
rials the criterion of long- t ime rupture is the maximum normal stress. Suppose 

that we carry out tests to destruction for every possible form of stress state. The 

results of these tests are presented in the form of ordinary long- t ime strength 

curves. Along the axis of abscissas we plot the rupture life and along the ordinate axis some equivalent stress, which may 

be selected in various ways. It turns out that if we take Oma x as the equivalent stress, then the points corresponding to 

different forms of stress states and different stress levels will l ie on a single 

curve. 

Long-time strength design for the complex stress state is now based 

almost exclusively on the maximum normal stress. Clearly, the creep 

rate is determined by the stress intensity or the maximum tangent ia l  

stress. Therefore, depending on the type of stress state, failure may 
occur at values of the strain varying within very wide l imits.  Under 

conditions of stress concentration, when the maximum normal stress 

is large, we get intense cracking without appreciable creep, and 

fracture may be brittle in character with relat ively short applications 

of the load [54]. Copper test pieces with a stress concentrator suffer 

brit t le fracture after 1-2 minutes,  whereas smooth specimens tested 

in tension exhibit pureiy viscous behavior. 

ig #'I 

J.0 /-> 
~50 ag - Z~ 

l 

ig v ~ 

24 

Fig. 14. 
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In [55] the criterion of maximum normal stress was somewhat refined for alloy 4.37B and one type of austenitic steel.  
It was shown that more accurate results are obtained if we take as the equivalent stress 

~ e q ~  s -k (l - -  )~) ~o. (5 .6)  

In subsequent publications Johnson has pointed out that ,  in addition to the first group of materials ,  failure of which is 
governed by the maximum normal stress, there is a second group for which the criterion of long- t ime  strength is the quan- 
t i ty  o0. The following features of these two groups have been noted. 

Group 1. Crack formation begins in the early stages of creep, the cracks being more or less uniformly distributed 
over the volume of the mater ia l .  During the creep process the cracks grow in size and their number increases. In the first 
and second stages the creep rate depends on o 0, as follows from the theory, but in the third stage it depends on Urea x. 

Group 2. Crack formation is not observed during creep; cracks appear immedia t e ly  before rupture and are strictly 
loca l ized  in the area of eventual  fai lure.  In a l l  three stages the creep rate depends on o 0. It might be assumed that the 
second group suffers viscous fracture, but this is not so. Transition to the third stage and rupture are accompanied by very 
small  strains. 

The phenomenological  theories of creep,  including the description of the process of failure,  are stil l  in an ear lys tage  
of development .  Attention is drawn to Kachanov's book [56], in which it is suggested that cracking does not affect creep 
and the process of failure is described as the progress of a failure front, behind which the mater ia l  has already lost its 
carrying capaci ty ,  whereas in front of it  the stress distribution is determined by the taw of creep.  This scheme is par t ic-  
ularly appl icable  to mater ia ls  of the second group. For materials  of the first group it is necessary to take into account the 
effect of cracking on the creep rates and their distribution. An at tempt to construct a theore t ica l  framework for this case 
is described in [57]. 

In this review it has not been possible to dwell  on a number of important details and severa l re la t ive ly  uninvestigated 
areas have been ignored. Recently, strenuous efforts have been made to reconci le  the viewpoints of specialists in metal  
physics, on the one hand, and those concerned with the theory of creep and its engineering applicat ions,  on the other. 
The above presentation of the phenomenological  viewpoint was prompted by a desire to draw attention to the factual  
mater ia l  a l ready accumulated  in the l i terature and st i l l  requiring analysis. 
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